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Let N~,,n equal the number of randomly placed arcs of length a (0 < a < 1) 
required to cover a circle C of unit circumference m times. We prove that 
lim~._, o P(N~,, n <= (l/c0 (log (I/a) q- mlog log (l/a) q- x) ---- exp ((-1/(m-I)!) 
exp(-x)). Using this result for m----1, we obtain another derivation of 
Steutel's result E(N~,I)=(1/a ) (log (1/~)+log log (l/a) + y+o (1)) as a-->0, 
y denoting Euler's constant. 

o 

Let C be a circle of unit circumference. Suppose that arcs of given length 

a (0 < a < 1) are thrown independently and uniformly on C. The distribution 

function of  the number N~ of these randomly placed arcs needed to cover the 

circle C has been calculated by Stevens [9] who has shown that 

(1.1) = :c ( - 1 :  ( " ) ( 1 - k a )  
o~k~l/~ k 

for any positive integer n. 

Using (1.1), one may readily compute the expectation E(N~) as 

(1.2) E(N~) = 1 - X ( _  1) k (1 - ka) k- ~ 
I ~k~ I/~ (ka)k + i 

(a derivation of (1.2) is given in [5]). 

Unfortunately, neither (1.1) nor (1.2) is very illuminating, since the summands 

undergo violent oscillations; therefore, it becomes of interest to study the asymp- 

totic behavior of P(N,, < n), E(N,) as a ~ 0. Using (1.2), Flatto and Konheim 

[5] have shown that 
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1 1 
(1.3) E(N:,) ,,., ~ log ~ - .  

This result has subsequently been improved by Steutel [8[ who, using Laplace 

transform methods, obtained 

1 ) 
(1.4) E(N~)=~ log + l o g l o g ~ + 7 + o ( 1 )  as c e ~ 0  

where 7 is Euler's constant. 

The problem of describing the asymptotic behavior of P(N~ < n)has 

recently been studied by Shepp [7]. He proved that the random variable 

c~(N~-(1/c0(log(1/~) + log log (1/c0) has a proper limiting distribution as 

e --* 0, and he obtained estimates for the tails of this distribution.* The problem 

of  obtaining the exact expression for this limiting distribution is left open in 

Shepp's paper. We shall obtain this limiting distribution in the present paper. 

In fact, we derive the following more general result in Section 2. 

THEOREM 2.6. Let N~,~, equal the number of randomly placed arcs of length 

~ required to cover the circle C m times. Then 

~-.o = ~  l o g c t + m l o g l o g c t + x  = e-  

The limiting distribution of Theorem 2.6 is one of the extreme value distribu- 

tions obtained by Gnedenko in his theory of the limiting distribution of the ma- 

ximum term in a sequence of identically distributed independent random variables 

16]. We give a heuristic derivation of Theorem 2.6 which brings out clearly the 

connection between the latter and the Gnedenko Theory. It suffices to consider 

the case ct= 1/n, n a positive integer ~ oo, as the general result is easily deduced 

from this particular case, We divide the circle C into n equal arcs which we label 

C~ .. . .  ,Cn. Let Ni = number of throws necessary to cover C, m times. Since C 

is covered m times iffeach C~ is covered m times, we have N1/,.,, = max(N1 .. . .  , N,). 

Let N = N(n) be a positive integer so that lim,_.| (N/n) = oo. A somewhat 

lengthy calculation, which we omit, shows that 

t The proof in [7] is erroneous. Shepp obtained upper and lower estimates for l~m, lira of 
P(N~ ~ (1/~) (log (1/~) + log log (1/ct)) >x) as ~---~ 0 (formula (94)of [7]). From these alone, 
we cannot conclude the existence of the limiting distribution. The estimates of course provide 
bounds for the tails of the limiting distribution, provided that we kaaow independently that the 
latter exists. 
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1 1 - - ~  as n ~ o o  for l < i < n .  (1.5) P(N i > N ) ~ ( m  1) - - ~ v .  - - 

We now choose N = IN' ]  where N'  = n(log n + mloglog n + x), [N ' ]  de- 

noting, as usual, the greatest integer < N ' .  It is readily checked that N/n .,. log n 

( 1 -  1In) ~,.~ e-X/n(logn) m. Thus (1.5) becomes 

e - X  
(1.6) P(N, > N')  = P(N, >= N) ,,, 

(m - 1) ! n" 

Now P(N1/n.s < N')  = P(N~ <= N',  ..., N,  < N') .  Treating the Ni's as "in- 

dependent random variables", we obtain 

(1.7) 

P(N1/..,. ~ N')  = [-I P(N, < N')  = f i  (1 - P(N i > N'))  ,~ 
i=1 i=1 

1 e-X ], 
(mZ-ll)!n ] 

_ e  - x  
, . ~ e  

(m - 1)!" 

The above argument is only heuristic because the Ni's are not independent 

random variables. Thus the Gnedenko Theory, which deals only with independent 

random variables, does not apply as it stands to our problem. We provide ano- 

ther heuristic explanation of Theorem 2.6 in Section 2. 

Folllowing a suggestion of  Shepp, we show in Section 3 how Steutel's asymptotic 

formula (1.4) for E(N,) follows from Theorem 2.6. To do this, we shall require 

estimates on the tails of the distribution of a (N~-  (1/~) (log 1/a + log log(1/~))) 

which is uniform in a.  Finally, we point out in Section 3 the analogy between 

Theorem 2.6 and a result of ErdOs and Renyi [2], who have studied a discrete 

analog of our problem. 

2. 

We proceed to prove Theorem 2.6 which we stated in Section 1. First we 

obtain an interpretation of the quantity P(N,,m _-< n), which proves to be useful. 

THEOREM 2.1. Let n -  1 (n > m) points be chosen independently and uni- 

formly  in the interval [0, 1]. These n -  1 points partition [0, 1] into n intervals. 

Let Lo,L1, . . . ,Ln_ ~ denote the lengths of the successive intervals. Define L i for 

all i by the requirement L~+ n = L~ and set S i = L i + . . .  + Li+,,_I. Then 

P(N,.m < n) = P(S t < ~, O <  i <  n - l ) .  

REMARKS 

1) Strictly speaking, b e  should write for fixed m, I{"~S[ ") instead of 

Li, St since these random variables depend both on i and n. We shall employ 
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the superscript n in some of the ensuing theorems where it becomes important 

to distinguish different values of n.  

2) The event [N~.,, < n] means that the first n randomly placed arcs cover 

C at least m times. The probability of this event is the same regardless of whether 

the arcs are open or closed. This follows easily from the fact that the probability 

that two of the arcs are contiguous is 0. For definiteness, we assume in the en- 

suing proof that the arcs are closed. 

PROOF OF THEOREM 2.1. We give C a fixed orientation so that it becomes meaning- 

ful to speak of a left and right end-point of an arc placed on C. We denote the 

closed arc with left and right end-points ct,/3 as [a,/3]; similarly, an open arc with 

end-points a,/3 is denoted as (a,/3). We use L(a,13) to denote the length of either 

arc. The positions of the first n randomly placed arcs are determined by their 

left end-points. We label the arcs as [Po, qo], "", [P.- i, q . -  a] where Po, Pl, "", P.-  x 

are consecutive points on C consistent with its orientation and [Po, qo] is the firs 

arc placed on C. Define Pi, qi for all i by the requirement pi = p~+.,q, = qi+.. 

The points P o , P l , ' " , P , - 1  partition C into n arcs [P~,P~+I], 0 < i -< n - 1 .  

The requirement that C be covered at least m times by [p~,q~], 0 <_ i <_ n - 1 ,  

is equivalent to demanding that L(pi,p,+m) < a for all i. For suppose that the 

latter holds; we then have L(pf,  pi+,,,) < a for i < j < i + m - 1 .  Hence 

[Pi+m-l,Pi+.,] ~- [Pj,P,+m] ~-- [Pj,qj] for i < j < i +  m - - 1 .  Since each p ~ C  

belongs to some [P~+z- 1, Pi+z], we conclude that each p ~ C is covered by at least 

m of the n arcs [pj, qj],  0 < .i _-< n -  1. Conversely, suppose all points of C are 

covered by at least m of the arcs [pj ,q j] ,  0 __< j < n -  1. We conclude that any 

point Pr is covered by [Pi, qJ], i <= j < i + m - 1 .  In particular 

P ~ [Pi, qi] so that L(pt, p) < a. Choosing p arbitrarily close to Pi+m, we conclude 

that L(p i, Pi+.,) <= a for all i. 

Choosing Po as 0, we open the circle into the interval [0,1].  The points 

Pl . . . . .  P.-1 become the points Y1 . . . . .  Y . - t  (Y1 <= Y2 < "'" < Yn-1) obtained 

from distributing n -  1 points randomly in [0, 1]. The requirement that L(p~, p~+.) 

= a becomes equivalent to S~ =< a,  0 _< i -< n - 1 .  Hence 

P(N,.m < n) = P(S  i < o:, O <  i <  n - l ) .  

REMARKS. In the introductory Section 1, we gave a heuristic derivation of 

Theorem 2.6. Another heuristic derivation may be based on Theorem 2.1. Let 

n = n(~, m, x) = [(l/a) (log(1/~) + m log log (I/a) + x)].  We conclude from Theo- 

rem 2.1 that P(N,,m < (1/~)(log(1/~) + mloglog(1/c 0 + x)) = P ( N , , ,  < n) 
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P(S(o ") < S (") _< ~). We prove later on that P(SCo ") > ~) . . . .  P(S,~)I > ~) 

m-t ( , - j l ) ~ y ( l _ ~ ) , - x - j  (formula 2.14), and this sum is readily seen to be = ] ~ j = 0  

(n~)  m-1 e - x  

( m - l ) !  ( m - 1 ) ! ( 1 / e ) l o g ( 1 / e )  

Treating ~(") et,) o o , .--, ~,,_a as "independent random variables", we obtain 

P(N=,m-<-~ log + m l o g l o g  + x  ) = I - [ P ( S i  (')<=~) 
i=O 

( e - X  ~n ,~, E - e - x / ( m -  1),. 

~ 1 - (m-1 ) ! (1 /~ ) log (1 /~ ) ]  

We proceed to give a rigorous proof of Theorem 2.6. Writing P(N=, m < n) 

= P ( S ~ < ~ , O < i < n - 1 ) =  l - P (  I I , - l r  S >~])  and using the inclusion- 
= - -  - -  ~ ' i  = 0  L i 

exclusion inequalities to estimate P( I1 , -~ r S ,-, i= o k i > ~]), we obtain for l __< n 

l 
P(N=,m <-_ n) <-_ ~. ( - 1 )  k 

(2.1) k=O 

! 

P(N=,,, < n) < ]E ( - 1 )  k 
k=O 

E P(S i , , ' " ,S i~  > ~), l even 
O<_il<...<ik<=n--1 

P(Si , , . . . ,  Si~ > or), l odd.  
O ~_it <.,, <i~ <_n-1 

Let n = n ( e , m , x )  = [(1/c0(log (l/c0 + mloglog (l/a) + x)] .  We have 

P(N=,r, -< (1/ct)(log(l/e) + mloglog(1/~) + x)) = P(N=,m < n) and we use 2.1 

to obtain lim,_.o P(N=,,,-<_ n). We first evaluate for each positive integer k 

lim=_.o E o=<~,<...<i~,_lP(Sh,...,Si~ > e).  We encounter here a basic difference 

between m = 1 and m > 1. In the former case Si = L~ and the random variables 

So,. . . ,  S,_ 1 are exchangeable, i.e., all n ! permutations S i , , " ' ,  Si. of So , ' " ,  S,_ 

have the same joint distribution function. In particular, all P(S , , . . . , S i k  > ~) 

appearing in the sum E o ~ i l <... < i~ <=,-~ P(Sh , " ' ,  Sik > e) are identical. For  m > 1, 

this is no longer the case. For  instance, a computation shows that for m = 2,  

P(So ,S t  > ct) ~ P(So ,Sz  > e). This fact makes the analysis considerably more 

complicated for m > 1. It is instructive first to treat the easy case m = 1 and then 

try to salvage the argument for m > 1. 

We use the formula 

(2.2) P(Lo, ..., Lk_ 1 > ~)  = (1 - ke) "-~ 

which is valid whenever 1 _< k < n and 0 __< k~ __< 1 [3, p. 42]. 

Let n = [(1/~t)(log(1/e) + loglog(1/e) + x)]. Since l og (1 -ke )  = - k e  + O(e2), 

we have 
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(2.3) 

Hence 
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( n - 1 ) l o g ( 1 - k : O  = - k  ( l a g l +  l o g l o g l +  x )  +O(cdog  l ) .  

The number of k tuples i l , ' " ,  ik where 0 < il < ... < i k ~ n-- 1 is 

k " k-T ~" k~ log . 

It follows that 
- k x  

e 
(2.5) lim 2 P ( S i l ' " "  Si"> ~) = k ! " 

e-*O 0 < i 1 <  ...<ik<-n-1 

Using (2.1) and (2.5), we conclude that 

(2.6) lim P N~, 1 < 1 _1 + loglog 1 ~ o  = ~  log e ~ +  =k=0 e kx = e - e - x .  

We have thus proved Theorem 1.6 for the case m = 1. We now try to dupli- 

cate the above method of proof for m > 1. We say that the k-tuple ( i s , ' " ,  ik) 

is m-separated provided ij+~ > ij + m for 1 < j < k - 1  and i 1 + n > i k + m.  
The condition of m-separability simply means that the sums S~,. . . ,Si ,  ` have 

no common summands. It follows readily from the exchange-ability of Lo , ' " ,  L,_ 

that P(Si , , . . . ,S i ,>oO is identical for all (i~,... ,ik) which are m-separated. 

Hence for these k-tuples, P(Si, , . . .  , Sik > ~) = P(So, S,,,, . . . ,  S(k-1) m < 0~) We 

evaluate lim~_, o ]E o<_i,<...<ik<_,-1P(Si,,'",Si~ > ~) in the following manner. We 

first obtain an asymptotic formula for P(So, Sin, "", SCk-~),, > ~) as ~ ~ 0 (corol- 

lary of Theorem 2.2). We then estimate P(S, I , . . . ,S~  > ~) for those k-tuples 

( ix , '" , ik)  which are not m-separated (Theorem 2.4). It turns out that the con- 

tribution to ~] o<_i,<...<ik<=,_IP(Si,,...,S~,, > ~) of these k-tuples is negligible as 

~ 0. The evaluation of lim,~o ~] o<_i,<...<~<_,-1P(Si,,'",Si~ > e) follows 

readily from the corollary of Theorem 2.2 and Theorem 2.4 and is carried out 

in Theorem 2.5. 
We first prove a lemma which is required for the proofs of Theorems 2.2 and 

2.4. Suppose that n - 1  (n > 1) points X(a n), .. v(,~ �9 ,~ ,_~  are chosen independently 

and uniformly in [0,1].  Let Y~"),..., Y,("_)~ be the numbers obtained by rearrang- 

ing the X~")'s in order of increasing magnitude and let Yo (") = 0. Define Y["~ for 

all i by the requirement Y/(~), = Y/(") + 1 and let S~")= Y/~)m- Y,("). Observe 

that S} ") is identical to S~ of Theorem 2.1. We have the following: 
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LEMMA. Let m <= ix < ... < ik <= n - m .  Then 

f l  { ,q (n-m)  ~(n-m)  ..  S(.-m)> a ] dF(y) (2.7) -~ ,o ,  ~.i,Drc(")r ~ ("), "",-,k~'(")~- a)= ~ P ~--it-m,--i2--m ," ' 'k" -m - - 1  - y] 

where F(y) is the distribution function of S(o")= Y(~"). 
PROOF. The random variables Y~("),..., Y,("-)I have the joint probability density 

function 
~(n-1) !  if 0 < y~ < ... < y,_~ < 1 [4, p. 386] 

f (y l , . . . ,y , , -1)  I 
~0 otherwise. 

Hence for any set of indices 0 < io < il < ... < ik < n--m 

(2.8) P('~!"),-,o , - , ,  'q'("), ...,_,~.~.(")> a ) =  ( n - l ) !  fR ... ~ dy t . . . dy ,_ l  

where R denotes the region: 0 = Yo < Y 1 <"" < Y,-  1, Yij + m -- Yij > ~ (0 < j < k). 
Let io = 0. Integrating out the Yl, "", Ym-Z variables, we may rewrite (2.8) as 

(2"9) SY")>a)= (n-1)' F [f, f ] - ,~ , - ,2 ,  , ,k (m-- 1 ) - - - - ~  y%-1 '(y,,;'" dym+l...dYn_ 1 

�9 dym 

where R'(y.3 denotes the region: Ym < Ym+l < "'" < Y,-1 < 1, Yij+m --Yij > 
(1 < j < k). Let vj = ( Y m + y  - -  Ym)/( 1 - Y m ) "  Equation (2.9) becomes 

(2.10) o r e  (n) ~ (n) Q (n) . ,~ (n)> O0 
at k ~ ' J 0  ' ~  ' J " s i2  ~ " "  ' ~ik - -  

n - 2  
= ( n - 1 ) ( m _ l ) ( n - m - 1 )  ! ym-l(1 _ y m )  n - m - t  

[ fR' "" f dv l""dv"-m-t]  dym 

where R' denotes the region 

> O~/(1--ym) (1 < j < k). 

Using (2.8) with n replaced by n - m ,  we obtain 

Pf~("-m)'q("-m)""S~:7-:)> ~ )  fR *. (2.11) - - ~ - - i l - m  , - - i 2 - m ,  ~ = (n - -m- - l ) .  , �9 

Equations (2.10) and (2.11) yield 

(2.12) Dtc(n) r ,g!n) .. ,g!n) > ~) 

n - 2 {,~(n-m) ,~(n-m) 

O = V O < V l  <=. . .<=Vn-, , -1 < 1 ,  % - - % - , .  

f dvl.., d r . 1 _  x. 

.~(.-m)>l ~ )ym-1(1 --ym) "-m-~ 
" " ,  - i k - m  - -  Y m  dye. 
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Equation (2.12) is identical to (2.7) as dF(y) = (n-1)(~,-_~)ym-~(1-y)"-m-ldy 

[4, p. 387]. �9 

We now prove 

THEOREM 2.2. Let n - 1  (n > 1) points be chosen independently and uni- 

formly  in [0,1].  Let km < n and c/n <_ ~ <- 1 where c is a positive constant 

and k, m are positive integers. For f ixed k, m, c we have 

~f.) ~,(~ [(n~) "m- ') ) 
(2.13) p( S (~ ), _ ~ ,  ,.., .(~_,)~ > ~) = ~((-~_ 17)~- + o ( ( m y  ~ - ' - ' )  

�9 ( 1 - k c O  . -  1 - k ( m -  1) 

REMARK. For m = 1, we already stated the exact formula (2.2), P(L(on~..., Lk(n) 1 > t~) 

= ( 1 -  k~) n- t ,  which gives more information than (2.13). It is possible to ob- 

tain exact formulae for --k'0D[~(n),~m~(n), "','~'(k- 1)m~'(n) > ~) for all k, m. However, these 

formulae become progressively more cumbersome with increasing m and formula 

(2.13) proves to be adequate for our purposes. 

PROOF OF THEOREM 2.2. The proof is obtained by an induction on k. For 

k = 1, the event I-S(o ~) > ~] means that at most ( m -  i) of  the randomly chosen 

points are contained in [0,cr Since the probability of choosing any point 

in [0, ~] is cr we have 

-,( ) (2.14) P(S(o ~)>e) = • n -  1 e j ( l _ e ) . _ t _  J 
j=O J 

= ( 2 n -  1 ~ ( 1 -  ~ ) " - l - J ) ( 1 - - ~ ) " - m .  
j=O J 

Since c/n < oe < 1, we have the estimates 

(2.15) ( n ;  1)~r < (no0, = 0((n~r 0 ~ j < m - 2  

1 ' n - 1 1 : _ 1  r n (2.16) I~m - I] = ~(m--S-~t + O(n " - 2 ) / : t - - '  = ( m - l ) ! - -  + O((mt)'-2)" 

Substituting (2.15) and (2.16) into (2.14), we get 

[ (nv)'-~ ) -~,)"-" P(S(") > ~) = ~(-m_-~v. + O((n~)'-2) "(I 

thus proving Theorem 3.2 for k = 1. 
Suppose Theorem 3.1 holds for k. We show that it holds for k + 1. Assume 

that (k + 1) r e < n ,  c/n ~_ oe< 1/(k + 1). Using the above lemma and 
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D[~ (n-m)r (n-m) q (n-m) observing that * w o  , ~..'m , "",'qk-1)m > a/(1 -- y)) = 0 for y > 1 -- ka, we 

obtain 

(2.17) *woV:r ",,~("), ..., ~'k,,r =) = ( n - i )  mn -_ 21 J[~ ym-, ( l _ y ) , - , , -  2 

, . . . ,  " ( k -  2).,  > dy.  

We have km <= n - m ,  (c/2)/(n-m) < c/n < e / ( 1 - y ) <  1/k. We may therefore 

apply (2.13) and get 

(2.18) P S(o "-r"), "",~'(k--1)m > = ( i - - y )  n-m-1 ((m --1)!) k 

\ 
O((n=)k("-2)-2)) �9 ( 1 - k = - y )  N where N = n - 2 - (k + + 1) ( m - l ) .  

Substituting (2.18) into (2.17), we get 

(2.19, P(S(o"),S: ), r = ) =  ( n - l ) ( n m 2  ~) / (he)k("-') ) �9 . . ,  "kin t ( N  + 2)- , )  

f l-k,ym_ 1( 1 -- ka - y)Ndy. 

W e  evaluate the integral appearing in (2.19). Let y = x + e.  Then 

f~t 2 -ka :01 -(k+ 2)~t (2.20) ym- 1(1 _ k = -  y)Ndy = (x + a)m- 2(1 _ (k + 1)= - x) ~ dx 

= • m 1 s  | x J ( 1 - ( k + l ) = - x ) N d x .  
j=o do 

r 2-(k+2)= X~(1 -- (k + 1)a -- x)Ndx Let x = (1 - (k + 1)=)v. Then ao 

= (1 - (k + !)a) N+J+2 J'~vi(1 - v)Ndv. The integral j'o~VJ(1 - v)Sdv is recognized to 

be B(j + 1, N + 1) = j  IN !/(j + N + 1) !, B(x, y) denoting the beta function. Hence 

(2.21) ym-2(1-k=-y )Ndy  = Z m 1 =m-2-'s J TNv. �9 
i = o  ( j  + N + 1) !  " 

(1 - ( k  + 1)=)  N + j + I  . 

For 1 < j  =< m - l ,  (n - l ) (~ -_2)=r" - l - JN! / ( j  + N + 1) = O((n,)  =-l-J) 

= O((n=)m-2). For  j = 0, (n-1)(~-_~)otm-lN!/(N + 1)! = (n=) ' - l / (m-1) !  

+ O((n=)m-2). We conclude from these estimates and (2.21) that 
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n -- 2 ym- 1(1 _koONdy (2.22) ( n - l ) ( m - l )  [a-k~ 
d ~  

- [(rn{(ncO--~--[- 1)t t-O((n~ " ( 1 - ( k  

Substituting (2.22) into (2.19), we conclude 

(2.23) .to(")cOO ... ~(,')> ~)= {(nOO(k+l)(m-l) 

I s r ae l  J. Math . ,  

+ 1 ) 0  N§ . 

+ O((n~)(k+ 1)(m- a)- 1)) 

�9 (1 - (k  + 1)x) " - I - ( k + z ) ( m - ~ )  �9 

Theorem (2.2) implies the following: 

COROLLARY. Let n = [(1]~)(log(1/~) + mloglog(1/~) + x)].  For fixed k, m, 

e - kX O~k 
pro(") ~(") r 

~o0 ,~'m , "' ,~'(k-l~m > ~ ) ~  ( ( m _ l ) ! ) k  1ogk(1/a) as ~ --~ O .  

PROOF. For a sufficiently small, the conditions km <= n, ( l /n )=  ~ = (I/k) 

are satisfied and Theorem 2.2 applies. Since l o g ( l - k s ) =  - k s  +O(~ 2) and 

n = (1/~)(log(l/a) + mloglog(1/c 0 + x) +O( l ) ,  we have 

1 ! 
(2,24) (n - 1 - k(m -1) )  log (l - kc 0 = k(log - + mloglog + x) + O(elog ) c~ ~ " 

Hence 

(2.25) (1-- k~)n-l-kCm-1)N e-kx(l  (log l)m)-k . 

Using n ~ (1/~)log(1/~), (2.13) and (2.25), we obtain 

e -kx o~k 
prr K,(n) ~(n) O0 

\ ~ 0  ~ m  ~ ' " ~ ( k - 1 ) m  ~ "~ ( ( m -  l)[)k log k(1/~)" 

REMARK. Suppose that n(~) is an integer valued function defined for 0 < ~ < 1 

and satisfying n(c 0 = (l/s)(log(I/s) + m log log(l /s)+ O(1)). We conclude by the 

above method of proof that -woPrr JmC("), ... , S (~)(k- 1)~ > ~) = O(c~k/logk(1/~)) 
We now proceed to estimate P(S~,,...,S > ~) in case (i l ," ' , ik)is not m-sep- 

arated. We consider first a special case. 

THEOREM 2.3. Let 1 < l < m - 1 .  Let n = n(~) be a positive integer valued 
function of a, 0 < a < l ,  satisfying n(a) = (1/~)(log(l/~) + mloglog(1/~) +O(1)). 

For fixed l, m, we have P(S o, S t > ~) = O(~/log2~). 

PROOF. We may restrict ourselves to 0 < ~ < �88 We have 



(2.32) 

Now 
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(2.26) [So,St > e] ~ [Yt+m > 2e] U [Ym < e, Yl+m -- Yl > e, Yl+m < 2el 

where Yj is the same as the quantity Y)") introduced earlier. We estimate the 

probability of each event on the right side of (2.26). Using (2.14) with So = Ym 

being replaced by Yl+,,, we obtain 

(2.27) P(Yl+m > 2e) = O((2ne)t+=-'(1 -- 2e)") =O((ne) t+"-* e-2"=). 

Since ne = log(l/a) + mloglog(1/e) + O(1), we have 

(1) 
(2.28) nc~ = O log , e T M  = O  lo l/c0) ~ "  

Substituting the estimates (2.28) in (2.27) and recalling that l < m - 1, we get 

(+) (2.29) P(Y~+m > 2r162 = O  . 

In view of (2.26) and (2.29), Theorem 2.3 will follow from the estimate 

P(E) =O(a/log2a) where E = [Ym > e, YZ+m -- Yl > ~, Yt+,, < 2~]. We rewrite 

the latter as E = [Yl < Yt+m - ~, a < Ym < Yl+m, a < Yl+,, < 2a]. Let f (x ,y , z )  

denote the joint probability density function of the random variables Yt, I1=, Yt+m 

It is known that 
(n-  1)! 

(2.30) f (x ,y , z )  = [(1_ 1)!]2( m -  l -  1 ) ! ( n -  m -  l -  1)! 

x t- X(y _ x ) m - l -  l ( z  _ y)t-*(1 - z ) " - ' - t -  * . 

(For a derivation of (2.30) see [4, p. 387].) Hence 

i (2.31) P(E) <= n "+' ' - '  ( y - x ) " - ' - '  ( z - y ) ' - a ( 1 - z ) " - " - ' - '  
O~ j a J O  dxdydz. 

Using the estimate 0 _< y - x  =< 2~ and performing the integration in the x,y  

variables, (2.31) yields 

2.,-I- 1 ~ 2a  
P(E) ~ 1 ~  n m+t ~ ' - ' - '  j ( z -a )21(1-z )  "-m-t- '  dz. 

tz 

f 2r, I1 (Z--~)21(l--z)n-m-l-ldz~ (Z--OO2t(l--z) "-m-t-I dz 
o~ 

fo fo = x2t ( l_e_x)" -m- t - ldx  = ( l _ e )  "-m+t t21(l_t)"-m-Z-ldt. 

The latter integral is recognized to be B (2 /+  1, n - m -  l) = (20 ! (n-  m - l - 1 ) ! /  

( n - m  + l)! =O(1/n 21+ 1). It follows that 
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(2.33) ( z -a)2 ' (1-z ) ' -m-~- 'dz= 0 = Ok n--~~" ] . 

We conclude from (2.28), (2.32) and (2.33) that 

(2.34) P(E)= O( log ,~ (1 /~ )  ) . 

Since l > 1, we have P(E) = (~/log 2 c 0,  thus proving Theorem 2.3. �9 

We now obtain an estimate for P(Si, ,  "',Si~ > a) for all k-tuples (il, " ' ,  ik) 

(k > 2) which fail to be m-separated. We introduce the notion of a component 

of( i l ,  -.., ik). Let A~I . . . . .  i~ be the union of the k open arcs (p , ,  p~, +m), '",  (Pit, P~+,,) 

lying on C (Po, Pl, ,... P~-~ are the points introduced in the proof of Theorem 2.1). 

Suppose that A~l,...,~k decomposes into r components. Each component K 

consists of a number of the arcs (Pi,P,+,,). We shall say that the set I of indices i 

for which (pi ,Pi+m)~K forms a component of (i~,. . . , ik).  Thus ( i l , . . . , ik )  will 

also decompose into r components. Clearly the number of components r < k 

and it is readily seen that r = k if and only if (i~, -.-, ik) is m-separated. 

We obtain an estimate for P(S i l , . . . , S~  > 0t) in terms of r .  

THEOREM 2.4. Let C(r, k) be the class of  all k-tuples (il. "", ik) consisting o f  

r components where 1 < r < k .  Let  n = n(o 0 be a positive in teger-valuedfunc .  

tion defined on (0,1) satisfying n(~) = (1/0t) (log(l/00 + log log( l /a)+ O(1)). 

Then  

max P(S i , , . . . , S ,~> e ) = O  ~og,gS-(l/e ) . 
( i l  . . . . .  i k )  8 C ( r , k )  

PRooF. The proof proceeds by induction on r .  Suppose r = 1. The union 

of the k arcs (P~,Pi~+m), "",(Pie,Pie+m) is connected. For  n > m, this implies 

that at least two of these arcs overlap, say (Pij,P~j+m) and (P~,P~§ This means 

that S~j and Sik have common summands. Since the L[s  are exchangeable, we 

have P(S~j,Si~ > or) = P(So,St  > ~) for some 1 < 1 < m - 1 .  Hence P(Si, , "",Stk 

> oO < maxl~_t<=m-lP(So,Sl) for all (il, "", ik) for which r = 1. Hence for 

r = 1, Theorem 2.4 is a direct consequence of Theorem 2.3. 

Suppose that Theorem 2.4 holds for r - 1. We show that it holds for r .  Sup- 

pose first that some component of (i~, . . . , i ,)  consists of just one index, say ij. 

Since the L,'s are exchangeable, we may assume that j = 1 and il = 0. For 

we haveP(S~, . . . ,S~> 0~) = P( So, S~ j . , _~ p ..., Si~_i ~ , Si~ + ~_~ j, ..., S~ j_ ~ +~_~ ~ > o~ 

and {0} is a component of the k-tuple (0,ij+~ - i j , " ' , i k -  ij, il + n- - i1 , . . . , i j_  ~ 
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+ n -  i j) .  Since {0} is a component of (0, i2 , ' " ,  ik), we have m < i 2 and i k < n -  m. 

We may therefore employ the lemma preceding Theorem 2.2. We obtain 

S[~-I) > dF(y) ~'o ,'-'t2 , ' " , " i k  f "q = ~ - -~ -h -m  , ' " ,  l - - y /  
(2.35) 

< D(g ' (n -m)  g,(n-ra) 
= "~ ,o i2 -m  , ' " ,  ~ l k - m  > 0~)" P(S~o ") > a ) .  

The ( k - l )  tuple ( i 2 - m , " ' , i  k - m )  consists of  ( r - 1 )  components. 

Since r - 1  < k - 1 ,  we conclude from the induction hyl~othesis that 
p L q ( n - m )  .r , - ~ - m  , ' " , - ~ - m  > ~) < C a ' - l / l ~  for some positive C and for all 

choices of i 2 , ' " , i k .  Furthermore we have P(S<o")> ~) = O(~/log(1/~)) (see the 

remark following the Corollary of Theorem 2.2). Hence 

max P ( S t , , " ' , S ~  > e)--O log,§ l ( l / e  ' 
(il . . . . .  ix) e Cl(r.k) 

Cl(r,  k) consists of those k-tuples in C(r, k) containing a component consisting 

of one index. This easily yields the general result, for let (il, "", ik) consist of r 

components, r __> 2, and suppose that each component has more than one index. 

Remove all but one index from one of the components and let i~ < ... < if denote 

the remaining indices. Then r = number of  components of (i~, ..., i's). As each 

component of (il, "", is) has more than one index, we have r < s. Since 

P ( S , t , . . . , S , ~ > a ) < P ( S , , , . . . , S ,  > a ) <  max = 0 (  a ~ ( ) )  
~j ... ~)~ c,~,.s) log "u I/a 

we obtain 

max P(S~,, ..., S~ > e ) - - 0  log'* 1 1 / ~ )  " �9  
(11 ,..., i~) E C(r.k) 

The Corollary to Theorem 2.2 and Theorem 2.4 yield 

THEOREM 2.5. Let ~ =[(1/~)(log(1/a) + mloglog(1/~) + x)] .  Then  

1 e -kx 
lim ~ P ( S i , , ' " ,  S~ > a) = k t ( ( m -  1) [)k" 
ct"'O O~_il<12<'"<ik~_n--1 

PROOF. We write the above sum ~ as ~ = E~ + ~2 where ~ extends over 

the k-tuples ( i~ , '" , ik)  which are m-separated, and :~z extends over all other 

k-tuples. 

Let nk., be the number of  k-tuples (i~, ..., ih) consisting of r components. Thus 
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nk.k = number of  k-tuples which are m-separated. Let 11,-..,I, denote the r 

components of (i~ ... .  ,ik). Let i~. be any index in I j ,  1 < j _< r .  It is clear that 

for a given choice of i~, ..., i ' , the number of choices of the remaining indices 

= C, where C is a positive constant depending only on k, m. Since the number 

of possible choices of i~, ..., i', = O(n'), we obtain rig,,= O(n'). The total num- 

ber of k-tuples (q, . . . , ik)  = ("k) = nk/k! +O(nk-1).  Hence 

( ) ~-~ ( 2 )  1 ( ~ l o g ~ ) '  n - E n k , =  +O(n  ~ - I ) ~ ~ .  . (2.36) n k k  ~-  k r = 1 

Now E 1 = nkkP(So,Srn, "",S(k-1) m > a ) .  It follows from the Corollary to The- 

orem 2.2 and (2.36) that 
- k x  

e 
(2.37) lim E1 - 

~-.o k ! ( ( m -  1)!)k" 

which implies Theorem 2.5, provided we can show l im~oE2 = 0. We write 

Z2 = E2,1 + "'" + E2,k- 1 where E2,, is the sum E P(Sh, . . . ,  S~ > a extending over 

the k-tuples (il, "", ik) with r components. Using Theorem 2.4 and bearing in 

mind that nk,, = O(n ~) = O((1/~log 1/a)k), we have 

( 1 ) l < r < k - 1 .  (2.38) Z2, ~ = O log(l/a) ' - - 

Hence lim=-.oE2,, = 0 for 1 < r < k - 1 .  It follows that ~ m,~os = 0, thus 

proving Theorem 2.5. �9 

We now state the main result of this paper. 

THEOREM 2.6. Let N~,, equal the number of  randomly placed arcs of length 

a required to cover the circle C m times. Then 

log + m  log log a + x = e -l/m-1))t~-~ 

PROOF. We have P(N~,,. < (l/a)(log(1/~) + m log log0/a  ) + x)) = P(N.,,.  <= n) 

where n = [(I/a) (log(i/a) + mloglog(1/a) + x)].  Using the inclusion-exclusion 

inequalities (2.1) and Theorem 2.5, we get 

P [ I N ' m < ~ ) l ~  l ~ -+mlog log -+x l l=y~ l  oo ( - 1 )  ( e - 1  k -~ ] = e_ l/(._ ,) , . .  . "  lim 
~t~O \ ' = a , ] ]  k = O  k! \ ( m - l ) ! ]  " 

o 

We show in the present section that Theorem 2.6 yields Steutel's asymptotic 
formula (1.4) for E(N~,0. We prove 
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THEOREM 3.1. Let F~(x) = P(N~,I < (1/~) (log(1/~) + log log(1]~) + x)). 

i) For 0 < ~ < e -1 and x > 1 we have 1 - F,(x) < C x e  -x ,  C being a po- 

sitive constant independent of ~. 

ii) A similar statement holds for x < - 1, F~(x) < C] x ] e-lXl for 0 < ~< e-2 

and x < - 1 ,  C being a positive independent of ct. 

Before proving Theorem 3.1, we show how it yields Steutel's formula for 

E(N~.I). We have E(N~,x) = (1/~)(log(1/~) + loglog(1/~) + f~ooxdF~(x)), so 

that we must show lim~_.o f _ ~  xdF~(x) = 7. For any R > 1, we write 

(3.1) f _xdF,(x)=f_-RxdF,(x)+f"_xdF,(x)+ffxdF,(x). 
Since l i m ~ o F , ( x ) =  e -e-x we have lim,.~o fg-RxdF,(x) = f~_Rxd(e -e-x ) .  Now 

f ~  xdF,(x) = - f~xd(1  - F , ( x ) )  = R(1 - F,(R)) + f~~ - F,(x))dx.  Using Theo- 

rem 3.1(i), we canzlude that f~xdF, (x )  < CR2e -R + Cf~xe-Xdx .  It follows 

that f~xdF~(x) ~ 0 as R ~ c~ uniformly for 0 < ct < e -1 .  Similarly Theorem 

3.1 (ii) implies that f--~ xdF,(x)~O as R ~ oo uniformly for 0 < ~ < e -2. 

We conclude readily from (3.1) that lim f~_~xdF,(x)= f~_~ xd(e-~-x).  Letting 
O0 - - e  - x  - - X  O0 t = e -x, w~ g~t f~_oax~l(( 'e-~) = f_ooXe e dx = -  fo log t e - td t .  The latter 

integral is recognized to be - F ' ( I )  and it is known t h a t - F ' ( 1 )  = 711]. Hence 

lim,~of~_ooxdF,(x) = ),, proving Steutei's formula (1.4). 

PROOF OF THEOREM 3.1. 

i) 1 -- F,(x) = P(N~,j > n) where n = [-(1/c0(log(1/ct) + loglog(l/~) + x)] .  

Now P(N,, 1 > n) = P ( U  "-atL ,-1 i =o ~ > ~)) < y~ a ) .  P(L, )  P(Lo) = i = o P(Li > = = 

(1 - ~)"-t (formula (2.2)). Hence 

(3.2) 

Since 

(3.3) log 1 + loglog~ 

P(N~. 1 > n) < n(1 - ~t) "-I  =< 2ne -"~. 

we obtain 

/ t  

(3.4) P(N,, 1 > n ) <  2 ( l~  

1 
+ x - ~ < n ~ < l o g  + l o g l o g ~ + x ,  

e x + loglog~ + x 2 ( 2 +  
logl/~t " ~-x N ~ ) e  l - x < 6 e x e - "  

the last inequality of  which is valid for 0 < ct < e-a,  x >= 1. Thus Theorem 
3.1(i) is established with the choice C = 6e. 
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ii) The proof of Theorem 3.1(ii) is based on the following lower bound for 

P(N, ,  x > n) obtained in [7, Formula 91]. We assume in the sequel that 0 < a < e  -2 

x <  - 1 .  
(1  - a )  2" 

(3.5) P(N~, 1 > n) >__ 
(1 - 2a)  "+1 + [ ( i - a ) " + 1  - ( 1 - 2 a )  "+1 ]. 

The denominator on the right side of (3.5) < ( l - a )  2" + 2 /n(1-a)" .  We con- 

clude from (3.5) that P(N~,I > n) > n(1-a)" / (n(1-a)"  + 2). Hence 

2 
(3.6) P(N~,, <= n) < 

n(1 - a)"" 

Let n = [(l/a)(log(1/a) +loglog(1/a)  + x)] where x < 0. We observe that 

F~(x) = P(N~,, < n) = 0 for na < 1, in which case Theorem 3.1(ii) is obviously 

true. We therefore assume na > 1 so that x > - l o g ( I / a ) - l o g l o g ( 1 / a ) +  1. 
Now 

(3.7) n(1 - a) n > ne-"~'-"~'~. 

Using (3.3) we easily verify the inequalities 

I ( 1  1 )  _,~,e ._2(1/~) lo .O/O~_e_4,~ (3.8) n >= ~ log + loglog + x  e-"~ => logae-"l/a' e > 

which are valid for - log( l / a )  - log log (1/a) + 1 __< x < O, 0 < a < e -2 .  We ob- 

tain from (3.7) and (3.8) 

e4, -" elXl ~ 
(3.9) n(1-00" > T f ( x )  -[-~[, - l o g  - loglog + 1 < x -< 0and o < a < e  -2 ,  

where f ( x )  = - x (log (I/a) + log log (i/a) + x)/log 1/a. 

The minimum of f (x )  on [ - l o g ( l / a )  + log log(l/a) + 1, - 1 ]  is attained at - 1 .  

Hence f ( x )  >= f ( - 1 )  = (log(i/c0 + loglog(1/a) - 1)/log(I/a) > 1 - 1/log (l /a) ,  

the latter being > �89 for 0 < a < e-2 .  Hence 

e-4e-2 elX[ 
(3.10) n ( 1 - a ) " >  4 I - ~ '  x < - I  and O < a < e  -2 .  

We conclude from (3.6) and (3.10) that 

(3.11) F,(x) < c I x l e - l X l ,  x < - 1  and O < a < e  -2 

with the choice C = 8e 4e-" , thus proving Theorem 3.1(ii). �9 

We conclude by mentioning two open problems suggested by the present paper. 



Vol. 15, 1973 RANDOM COVERINGS OF A CIRCLE 183 

1) It seems likely that Steutel's formula (1.4) should generalize as follows 

for all m :  

(3.12) E(N~,m)= ~ log + l o g l o g  + ? m + o ( 1 )  as ~ t - -0  

where ?m = Y - log log (m - 1) ! 

As in the case m = 1, (3.12) follows from the formal step 

lim (x) = xd(e- 1/c.,- l)i e- x 
~ t - a . O  

where F~.m(x) = P(N~.m <- (1/~)(Iog(1/~) + mloglog(1/~) + x)). The justifica- 

tion of the formal step would follow from a generalization of Theorem 3.1 to 

m > 1, which would in turn follow from a suitable generalization of 3.5 to m > 1. 

2) The problem of random coverings of C has the following discrete analog 

considered by Erd0s and Renyi [-2]. Balls are thrown into n urns uniformly and 

independently. Let N'.,m equal the number of throws necessary to obtain at least 

m balls in each urn. It is shown in [1] that 

lim P(N'~,,. <= n(logn + (m - 1 )  log log n + x)) = ~l/~m-1)te-x 
n --~ O0 

This result is a discrete analog of Theorem 2.6 with 0~ being replaced by 1In. 

The ErdSs-Renyi result may be reformulated in the context of our problem. 

Let N'.,m equal the number of randomly placed arcs of length 1In necessary to 

cover m times a given lattice L of n equally spaced points on the circle C. It is 

readily seen that the random variable N',,. is essentially the same as the N',m 

considered by Erd6s and Renyi. We merely replace the words ball and urn by 

arc of length 1In and point of L. Hence 

lim P(N'~,m <= n(logn + (m - 1 )  log log n + x)) = ~-x/~m-l),e-x 
n " *  t~O 

On the other hand, setting N.,m = N~/.,,~, Theorem 2.6 states that 

lim P(N..,. <_ n(logn + mlog logn  + x)) = e -1/~'-a)~ e-x 

Comparing the two results, one readily verifies that N",,./n log log n ~ 1 in measure 

as n - , o o  Here N" = N  �9 .,m . , . , -  N.,,. = number of arcs of length 1In which 

must be thrown to cover C m times after L has already been covered m times. 

It is reasonable to conjecture that (N;, ' , . /n- loglogn) has a proper limiting dis- 

tribution as n ~ oo, but we have not been able to prove this. 
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